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I. INTRODUCTION

One of the most ambitious visions of robotics for the
near future is the smooth integration of robots into human
populated spaces, such as crowded pedestrian environments.
Naturally, the problem of generating socially compliant,
humanlike robot motion that ensures human comfort has
attracted significant attention over the past few decades.
This problem has been proven to be particularly challenging,
mainly due to the lack of formal rules regulating navigation
in unstructured environments, the lack of explicit communi-
cation among agents and the complexity of the environment.

II. RELATED WORK

In an effort to relax this problem from the aforementioned
complications, researchers have been drawing inspiration
from human navigation. Several approaches have focused
on modeling social rules and imbuing robots with an under-
standing of them [5, 8, 20]. Others, observing the cooperative
nature of human navigation (as highlighted for example
by Wolfinger [21]) have proposed planning algorithms that
distribute the responsibility for collision avoidance across
the navigating agents [9, 11, 19]. Finally, a few works,
leveraging the existence of sophisticated mechanisms of
implicit communication in humans [6], have focused on the
generation of intent-expressive robot behaviors [10, 12, 17]
which have been shown to be of particular importance for
various areas of human-robot interaction (e.g. [4, 7]).

Although these works have captured different elements of
what constitutes competent pedestrian behavior, they make
use of specific context assumptions that prevent them from
being deployed widely in different environments and under
different settings. These assumptions are introduced for ex-
ample when (1) deciding on a training set, (2) employing
techniques that aim at imitating observed human behavior,
(3) adopting context-specific models of human behavior, (4)
engineering specific classes of robot behavior or (5) ignoring
the complex dynamics of interaction among agents.

This work proposes a planning framework for the gener-
ation of smooth, consistently intent-expressive and adaptive
behaviors in multi-agent domains that aims at approaching a
greater level of generalization across different environments,
settings and types of agents. In order to do so, we leverage
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the underlying topological structure of multi-agent collision
avoidance. We introduce a novel abstraction that maps a
multi-agent trajectory in the form of Cartesian coordinates
to a word, representing the joint strategy of avoidance that
agents followed throughout the course of the scene. This ab-
straction serves as a data structure containing a specification
for the generation of a multi-agent trajectory. We propose a
trajectory planner that generates multi-agent trajectories from
topological specifications in the form of a word. This planner
is used to make online multi-agent trajectory predictions,
essentially combining efficiently the processes of motion
planning and prediction. Benefits of this approach include
adaptation to unexpected events such as the emergence of
heterogeneous agents or agents with changing intentions and
acceleration of a consensus towards a mutually beneficial
strategy of collision avoidance despite the complication of
no explicit communication.

III. APPROACH

In this section, we introduce our model for abstracting
a multi-agent trajectory from a cartesian representation to a
symbolic representation and a method for generating a multi-
agent trajectory that satisfies a topological specification,
specified in the form of a symbol. Finally, we describe how
we employ this method to design an online, decentralized
algorithm for navigation in multi-agent environments.

A. From Trajectories to Symbols

In past work [13, 15], we proposed an abstraction that
maps a multi-agent trajectory in the form of Cartesian
coordinates into a symbolic representation in the form of a
topological braid word [1, 3]. Noticing that agents’ naviga-
tion strategies over the course of a scene are reflected in the
entanglement of their trajectories, the formalism of braids
serves as a data structure that enables an agent to reason
about the emerging joint behavior in a principled fashion.
In particular, by observing everyone’s past trajectories, an
agent may infer the braid describing the future joint behavior
of multiple agents towards making an informed decision
about its own navigation strategy. We have shown how a
predictive mechanism of this form may allow an agent to plan
consistently intent-expressive and socially compliant actions
towards facilitating the convergence to a consensus over a
joint strategy of avoidance [13, 15, 16].

The braid representation may encode any multi-agent
navigation scenario with any number of agents. As such,
it is a very useful tool for analyzing the topological prop-
erties of an execution (see e.g. [17]). However, it is not
always a practical tool for online inference, as for any given



Fig. 1: Pictorial representation of the Topologically Adaptive Navigation Planning scheme. The robot observes agents’ past trajectories
ζ, generates a set of m possible scene evolutions w1, . . . , wm, derives geometric representations of them ξ1, . . . , ξm and picks the next
action assigned to it from the trajectory of the lowest cost, ξ∗.

environment the set of braids is infinite and determining
a finite set of likely and realistic candidates is not trivial.
Learning techniques may help guide the search but their
efficacy is highly dependent on the selected dataset and their
applicability may vary depending on the context of the scene
in consideration. Motivated by these issues, in this work,
we introduce a different data structure that makes use of
the topological invariant of the Winding Number towards
characterizing a multi-agent trajectory with respect to its
topological properties.

For a pair of agent trajectories a, b : [0, 1] → R2, the
Winding Number is defined as:

wab =
1

2π

∫ 1

0

dθ, (1)

where θ(t) = tan−1 (b(t)− a(t)) is the angle between
agents a and b at time t ∈ [0, 1]. This quantity represents
the number of times the two agents revolved around each
other throughout their motion from t = 0 to t = 1. For our
application, where agents aim at moving efficiently to their
destinations while avoiding others, the exact quantity wab is
not important; it is its sign that carries the topological prop-
erty of the avoidance. A positive winding number indicates a
collision avoidance involving two agents passing each other
from the right hand side whereas a negative winding number
represents collision avoidance from the left hand side.

For a system of n navigating agents, let us collect the
pairwise winding numbers of all agents into the winding
tuple:

w = (w12, w13, . . . ) . (2)
This tuple is a symbolic description of the global, topological
properties of a multi-agent trajectory.

B. From Symbols to Trajectories

We propose a computational framework that explicitly
leverages the outlined topological structure of multi-agent
collision avoidance towards informing the motion planning
process of an agent navigating in a multi-agent environment.
This design enables an agent to rapidly adapt to unexpected
events, such as the emergence of heterogeneous agents or
agents with changing intentions.

Our approach is based on a method for transitioning from
a symbolic representation w to a trajectory representation ξ.
It is inspired by the framework of Berger [2] which makes
use of Hamiltonian dynamics as a driving force a set of

particles to move along trajectories of desired topological
specifications. This method allows us to plan a multi-agent
trajectory that drives a group of agents from a set of initial
conditions to a set of destinations, while satisfying a set
of topological specifications, formulated in the form of
pairwise winding numbers w. This approach constitutes a
computationally efficient approach to multi-agent trajectory
planning as it allows us to plan the motion of multiple agents
by growing them from initial conditions with a rule-based
decision making scheme.

C. TANP: Topologically Adaptive Navigation Planning
We propose an online navigation planner, called TANP

(Topologically Adaptive Navigation Planning), based on our
outlined method for multi-agent trajectory generation. The
planner runs in replanning cycles. At each cycle, it (1)
predicts a set of candidate windings W , representing a set
of distinct scene evolutions, (2) computes the probability
of these windings given observations of agents’ past trajec-
tories ξpast with a model of form P (w|ξpast), (3) plans
corresponding geometric representations ξ1, . . . , ξk with the
method of sec. III-B for the k most likely among them,
(4) scores the k generated trajectory representations with
respect to a cost comprising trajectory quality measures such
as efficiency, acceleration and distance from other agents and
(5) executes the first action a∗ from the trajectory of lowest
cost. A schematic representation of the proposed planning
architecture is depicted in Fig. 1. This architecture is not
tied to the selection of the aforementioned quality criteria.
Different cost functions could be employed to introduce a
variety of costs such as Legibility [7, 16] and dimensions of
human-awareness [18].

IV. RESULTS

Fig. 2 depicts planning examples from scenarios involving
2, 3 and 4 agents respectively. The agent running our
algorithm (red color) observes the past trajectories of others,
maps them to a set of intended destinations (represented as
landmark pointers of same color) and grows a set of topolog-
ically distinct, time-parametrized, collision-free trajectories
(overlayed on top of each other, with varying levels of
transparency) that drive all agents (including the red one) to
their destinations. More details about the proposed algorithm
and a more extensive validation will be available at our
upcoming paper [14].



(a) Two agents. (b) Three agents. (c) Four agents.
Fig. 2: Trajectory prediction for examples with different numbers of agents. The TANP agent (red color) is moving towards the red
destination. It first makes a coarse prediction about the destinations of others (colored pointers) and then grows a set of qualitatively
distinct trajectory predictions, denoted with different color tones.

V. CONCLUSION

This work contributes: (1) a data structure, built around
the topological invariant of the winding number to represent
the topological properties of a multi-agent trajectory; (2) a
planner that generates global, multi-agent trajectory predic-
tions from symbolic, topological specifications; (3) an online
algorithm that makes use of topologically distinct multi-agent
trajectory predictions to adapt robustly to the navigation
strategies of potentially heterogeneous agents in dynamic
environments with no explicit communication. Ongoing work
involves extensive testing of the proposed motion planner in
simulation in different types of environments and settings
and a user study to measure the effects of the planner on the
behaviors of human subjects in a controlled lab environment.
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